Self-Help Energy Analysis for Your Plant

Warren M. Heffington, PE, CEM Industrial Assessment Center and

Energy Systems Laboratory,
Mechanical Engineering Department
Texas A&M University
College Station, Texas

Energy Analysis

- ****No-cost, low-cost projects and resources:**

 - What you can expect of others
 - **区**U.S. Dept. of Energy
 - Consultants
 - Vendors
 - Utilities

Background

#Industrial Assessment Center (IAC) Program

- 440 assessments by A&M
- 60% project implementation rate
- Mostly no cost, low cost projects

#Take advantages of DOE Best Practices

#DOE works with industry to identify plant-wide opportunities for energy savings and process efficiency

- **#DOE** Best Practices Program includes
 - New and emerging technology implementation, and tech transfer
 - Plant assessments
 - Software tools, clearinghouse, publications library, and database
 - Showcases
- #http://www.oit.doe.gov/bestpractices/

- ****Examples of emerging technologies:**
 - Ultrasonic tank cleaning
 - Methanol recovery from hydrogen peroxide
 - Advanced turbine systems
 - Advanced burner systems for emission control
 - And many others--available at
 - Name of the image of the ima

- #Downloadable software from Best Practices
 - Motormaster +3.0*

 - Steam System Scoping Tool*
- *Download from

http:/www.oit.doe.gov/bestpractices/software_tools

- ****Additional useful software tools available**
 - △AirMaster+ (available via CD)
 - △ASDMaster (available via CD)
 - Process Heating Assessment Tool (under development)

#Best Practices provides plant assessments

****No-cost industrial assessments are available**

from centers around the nation

- #Call a nearby IAC for a no-cost energy assessment if you meet 3 of 4:
 - Energy bills under \$2 million annually
 - ☐Gross annual sales under \$100 million annually

 - No-in house expertise for energy analysis

- #Even if you don't meet 3 of 4--too large?-we might be able to help
- **#Locally**, contact
 - wheffington@mengr.tamu.edu
- **#IAC** national contact info:
 - http://www.oit.doe.gov/bestpractices
 - http://oipea-www.rutgers.edu

****Looking at the forest is sometimes not too** helpful

- ****Sometimes--just look at a few dying** individual trees and treat them
- #However, it is a good idea to look at whole subsystems
 - process heating--not just product quality
 - electrical--not just motors
 - steam--not just steam traps
 - air--not just lack of air
 - water--not just the new wastewater treatment facility

- #For example, consider the whole of the electric motor subsystem.
- # Problems can be costing \$\$ in any of these subparts, so look at everything together

- #The Texas A&M IAC recently visited several refineries and chemical plants
- **#**Some projects are complex
 - replace natural gas fired engines
 - install flare gas compressor system
 - install variable frequency drives
 - install turbines
- **#All** require additional engineering

- **#Simple projects not requiring engr. assist.**
 - Repair steam traps
 - Repair leaks--steam, water, air
 - Turn off unused equipment and lights
 - Repair insulation
 - Use synthetic lubricants
 - Use LEDs for exit lights where possible
- **#List** is from chemical plants and refineries

***Repair steam traps**

- #Purchase an ultrasonic detector for about \$1,500 to \$5,000 and use it
- #Recommended 5 times in 8 large plants
- #Average savings \$300,000/yr
- #Payback less than a month

Repair leaks

	#	Avg	Simple
	Projects	Savings	Payback
		(\$/yr)	(yrs)
Steam	4	105,000	0.1
Nitrogen	1	140,000	0.4
Water	1	30,000	0.1
Air	2	2,000	0.5

XTurn off unused equipment

```
# Avg
Projects Savings
($/yr)
Motors 2 33,000
Lights 8 4,000
```

- #Implementation requires employee education and possibly switches or sensors
- **#Obvious safety issues with lights**

***Repair/add missing insulation**

- #Recommended 3 times in 8 large plants
- **#**Saves \$24,000/yr
- #Payback usually a few months at most

#Use synthetic lubricants

- ****Recommended 6 times in 8 large plants**
- **Saves** \$21,000/yr
- **Last longer but cost more, so the implementation cost turns out to be about the same as petroleum based lubes.

#Install LEDs in exit lamps

- #Great, small project
- #Saves energy, demand, supplies and labor
- #Big help to code compliance

- **#Consider performing your own assessment**
- #Assistance available on web
- #http://oipea-www.rutgers.edu/documents/doc_m
 - Self-assessment workbook for small manufacturers
 - Modern industrial assessments: a training manual

Energy Assessments What Others Can Do

#Outside assistance

- Consultants--Tune-up specialists for the whole system or subsystems
- Vendors
- Utilities

Energy Assessments What Others Can Do

#Identify, quantify and report cost saving projects primarily related to energy.

****Cost savings is key: some cost saving projects may not reduce energy consumption.**

#Pollution prevention benefit

Energy Assessments Types of Energy Assessments

- **#**Screening or walk-through
- **#Detailed**

 - Capital-intensive measures
- #Formal, expect documentation

Energy Assessments What Others Can Do

- #Preliminary activities <u>before</u> the formal assessment of your system
- Review 12 months (or more) historical data
 - Utility bills
 - Equipment logs
- **#Review emissions data and attainment plan**
- #Review capital expenditure plan
- #Perhaps a site screening visit

Energy Assessments What Others Can Do

- #What can you expect from an initial utility consumption review?
 - Errors
 - Correct tariff
 - Outstanding features
 - Graphs of energy, demand and cost

****Additional site visit(s)**

#Extensive data gathering, perhaps with dataloggers recording data for week or more

****What should you expect?**

- #Formal, technical report whose heart is projects recommended for implementation

- ****Project descriptions**

 - Calculations intelligible to your technical staff
 - Detailed cost, energy, demand and emissions calculations

#Beware the 10% disease

- **#Implementation information**
 - Conceptual design
 - Sufficiently detailed for budget decisions
 - ☑ Information about utility rebates if available

#Financial analysis

An Energy Analysis of Your System

- #What you can do to make your system cost less to operate

 - Look at subsystems as whole
 - Implement some obvious projects

#What others (particularly consultants, but also vendors and utility reps) can do to help make your system cost less to operate

Energy Analysis Resources

△DOE

- http://www.oit.doe.gov/bestpractices/
 - http://www.oit.doe.gov/bestpractices/software_tools

- - http://oipea-www.rutgers.edu/documents/doc_m

- **⊠**jim@esl.tamu.edu